
PHYSICAL REVIEW E 67, 041101 ~2003!
Survival probability of a diffusing particle in the presence of Poisson-distributed mobile traps
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The problem of a diffusing particle moving among diffusing traps is analyzed in general space dimensiond.
We consider the case where the traps are initially randomly distributed in space, with uniform densityr, and
derive upper and lower bounds for the probabilityQ(t) ~averaged over all particle and trap trajectories! that the
particle survives up to timet. We show that, for 1<d<2, the bounds converge asymptotically to giveQ(t)
;exp(2ldt

d/2) for 1<d,2, whereld5(2/pd)sin(pd/2)(4pD)d/2r and D is the diffusion constant of the
traps, and thatQ(t);exp(24prDt/ln t) for d52. For d.2 bounds can still be derived, but they no longer
converge for larget. For 1<d<2, these asymptotic forms are independent of the diffusion constant of the
particle. The results are compared with simulation results obtained using a new algorithm@V. Mehra and P.
Grassberger, Phys. Rev. E65, 050101~2002!# which is described in detail. Deviations from the predicted
asymptotic forms are found to be large even for very small values ofQ(t), indicating slowly decaying
corrections whose form is consistent with the bounds. We also present results ind51 for the case where the
trap densities on either side of the particle are different. For this case we can still obtain exact bounds but they
no longer converge.

DOI: 10.1103/PhysRevE.67.041101 PACS number~s!: 05.40.2a, 02.50.Ey, 82.20.2w
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I. INTRODUCTION

Reaction-diffusion processes represent a large and im
tant class of systems with nonequilibrium dynamics. From
fundamental physical viewpoint, the interest in these syste
lies in the fact that the concentration of reactants is govern
in general, by irreversible reaction events that depend on
spatial distribution of particles rather than through equil
rium fluctuations controlled by a chemical potential. Su
model systems have a range of applications, most notab
chemical kinetics@1,2# but also to interfacial growth@3#, do-
main coarsening@4,5#, and aggregation@6#.

The most intensively studied reactions are single-spe
annihilation (A1A→B) and coalescence (A1A→A) as
well as two-species annihilation (A1B→B)—see, e.g.,
Refs.@7–9# for reviews. In this paper we focus on the tw
species problem. It is known to exhibit two different class
of long-time behavior depending on whether the initial co
centrations ofA and B particles are equal or not.~As an
aside, we note that a similar dependence on the initial c
dition also holds for theA1A→B reaction when the reac
tant motion is deterministic rather than diffusive@10,11#!.
The reason for this is that when the initial densities ofA and
B particles are the same, they remain so for all tim
whereas if, say, the initial density ofA particlesrA(0) is less
than that of theB particlesrB(0), the ratio rA(0)/rB(0)
→0 as t→` and at late times one has a few, isolatedA
particles diffusing in a background ofB particles.

The case of equal initial densities is well understood, a
results similar to those for theA1A→B with diffusive par-
ticle motion have been obtained@12,13#. In low dimensions,
hered,4, fluctuation effects are important and one finds
density decayrA(t)5rB(t);t2d/4 in this diffusion-limited
regime. Above the critical dimensiond.dc54 one finds
that the mean-field resultrA,B(t);1/t applies. This result
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also holds for theA1A→B process above its critical di
mensiondc52.

By contrast, the density decay forms for theA1B→B
process when the initial densitiesrA(t) and rB(t) are not
equal are less well understood. In fact, since the exposi
of the process as a model of monopole-antimonopole a
hilation in the early universe nearly twenty years ago@12#,
only a few results are known exactly. Most notably, Brams
and Lebowitz@14# proved rigorously that, at large times, th
density of the minority species~which we will take to be the
A particles! behaves as

rA~ t !;H exp~2ldtd/2!, d,2

exp~2l2 ln t/t !, d52

exp~2ldt !, d.2

~1!

revealingd52 to be critical in this case. To the best of o
knowledge, no predictions for the constantsld were given
until recently@15#. Furthermore, there has been no convin
ing numerical verification of the predicted decay even in o
dimension, despite the development of sophisticated sim
tion techniques@16# that allow the probing of extremely
small densities that emerge at large times. In this paper,
expand on the bounding arguments reported in Ref.@15# that
give rise to precise values ofld for d<2. We also present a
detailed description of the simulation algorithm introduced
Ref. @16# and extend it to test our bounding arguments a
understand the approach to the asymptopia described by
~1!.

As noted above, the late-time regime is characterized b
few isolatedA particles diffusing in a sea ofB particles. Thus
it is appropriate to consider the extreme case of a singlA
particle in a sea ofB particles that has a uniform~Poisson!
density. In this case, the quantityrA(t) is just thesurvival
probability of the A particle. Furthermore, if the diffusion
©2003 The American Physical Society01-1
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constants of theA andB particles are the same, one can a
view rA(t) as the fraction of particles that have not met a
other particles. Thus the reactionA1B→B in the limit of a
low density of A particles has been discussed under
guises ofuninfected walkers@17# in which random walkers
infect each other on contact,diffusion in the presence o
traps @16,18# in which theB particles are considered as tra
for the A particles, andpredator-prey models@19# in which
one asks for the survival of a prey~the A particle! being
chased by diffusing predators~theB particles!. To avoid con-
fusion, we shall adopt only the trapping terminology in o
discussion.

In this work, we show how the survival probability of
diffusing particle in the presence of mobile traps can be
derstood in terms of thetarget annihilation problem@20–22#
~or first passage problem@23#! where one asks for the prob
ability that none of the traps has entered a particular reg
~target! in the d-dimensional space. In turn, the asymptot
of the target annihilation problem are intimately related
the recurrenceor transienceof diffusion in various dimen-
sions. A process is said to be recurrent if the probability
returning to the initial configuration is unity. In the context
diffusion, this implies that with probability one, a walker wi
visit a particular point in space infinitely often. It is we
known ~see, e.g, Refs.@23,24#! that diffusion is recurrent in
dimensionsd<2, whereas in more than two dimensions it
transient~i.e., the return probability is less than one!. It is
precisely this property of diffusion that gives rise to the cr
cal dimension of two for the trapping reaction and hence
asymptotic results~1! for the A1B→B process.

The principal result of the paper is the determination
the constantsld in Eq. ~1! for d<2, and the derivation of
upper and lower bounds ford53. A striking feature of the
results is that, ford<2, the value ofld is independent of the
diffusion constant of theA particle.

We begin in the following section of this paper by defi
ing the trapping reaction model. Then, in Sec. III we pres
in detail our analysis of the one-dimensional case, testing
predictions in Sec. IV where we discuss how the model m
be simulated efficiently. In Sec. V, we show how the meth
used to treat the one-dimensional case can be extende
general dimensionsd.1. Only when the underlying diffu-
sion process is recurrent~i.e., for d<2) do our upper and
lower bounds converge asymptotically to give exact pred
tions forld . Finally, in Sec. VI, we present a discussion a
summary of the results.

II. DEFINITION OF THE MODEL

The trapping reaction model we consider is defined
follows. At time t50 a particle is placed at the origin of
d-dimensional coordinate system. Surrounding this particl
a uniform sea of traps whose initial positionsxW i are chosen
independently. This initial condition ensures that the dis
bution of traps is Poisson, i.e., the probability that a volu
V containsN traps is@(rV)N/N! #exp(2rV) in which r is the
mean number of traps per unit volume.

The dynamics of the particle and traps can be expres
using the Langevin equation
04110
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a~ t ! ~2!

in which the subscripti 50 denotes the particle,i>1 one of
the traps and the superscripta indicates a component of th
position vectorxW i . The noiseh i

a(t) is a Gaussian white nois
with zero mean and correlator

^h i
a~ t !h j

b~ t8!&52Did i j dabd~ t2t8!. ~3!

We take all the traps to have a diffusion constantD and the
particle to have a diffusion constantD8. HenceD05D8 and
Di5D for i .0. The quantity of interest in this model is th
probabilityQ(t), averaged over all initial conditions and re
alizations of the random walks, that the particle has not
met any of the diffusing traps.

III. ANALYTICAL RESULTS IN ONE DIMENSION

For clarity, we restrict ourselves initially to the cased
51. Later, in Sec. V we will explain how the argumen
presented in detail here can be generalized to higher dim
sions. We begin with a description of the target annihilati
problem before moving on to discuss how it applies to
more general problem of a particle’s survival in a sea
diffusing traps. The target annihilation problem can
solved exactly for anyd @20–22#. The asymptotic form of the
solution, and the leading corrections to it~for d.1), play a
central role in our bounding arguments. To establish the
tation and to make our presentation self-contained,
present in this paper a brief derivation of the main results
a prelude to deriving the bounds.

A. The target annihilation problem

Consider a one-dimensional line containing a target
length 2l centered on the origin~i.e., lying betweenx52 l
and x5 l ). We wish to calculate the probabilityQT(t) that
none of the diffusing traps initially placed outside this regi
has hit the target by a timet. This quantity can be calculate
if one knows the probabilityQ1(tuy) that a trap initially at
position y has not yet entered the target region. Since
target is static and each trap executes independent diffus
we can simply multiply the probabilities for each individu
trap together and average over all possible initial position
find QT(t).

Let us consider then a trap that has its initial position
the right of the target, i.e.,y. l . The probabilityQ1(tuy) that
the trap has not reached the target satisfies the backw
Fokker-Planck equation

]Q1~ tuy!

]t
5D

]2Q1~ tuy!

]y2
~4!

with the boundary conditionsQ1(tu l )50, Q1(0uy)51 if y
. l andQ1(tu`)51. These express the facts that the pro
ability that the target has been reached if the trap starte
y5 l is one, that it is reached in zero time fromy. l is zero
1-2
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SURVIVAL PROBABILITY OF A DIFFUSING . . . PHYSICAL REVIEW E67, 041101 ~2003!
and that it is reached from infinityin a finite time is zero
respectively. The solution to Eq.~4! that satisfies these
boundary conditions is

Q1~ tuy!5erfS y2 l

A4Dt
D ~5!

in which erf(x) is the error function.
Instead of a single trap to the right of the target, consi

N independently diffusing traps, each initially placed at ra
dom in the intervalyiP@ l ,l 1L#. Then, the probability tha
none of the traps has reached the target by timet is

QN~ t !5)
i 51

N
1

LEl

l 1L

dyi erfS yi2 l

A4Dt
D . ~6!

It is convenient now to rewrite the error function in terms
the complementary error function, erf(x)512erfc(x). Then
one has

QN~ t !5F12
1

LEl

l 1L

dy erfcS y2 l

A4Dt
D GN

. ~7!

Since we wish to consider an infinite sea of traps, we t
N5rL and then the limitL→` holding r, the density of
traps, fixed. This yields

Q`~ t !5 lim
L→`

F12
1

LEl

l 1L

dy erfcS y2 l

A4Dt
D G rL

5expS 2
2rADt

Ap
D . ~8!

This gives the probability that no traps initially positioned
one side of the target have reached the target by timet. Since
we have in mind a target surrounded on both sides by tr
and that the motion on each side is independent, we ob
the probability that the target has not been annihilated b
trap by squaring Eq.~8!. That is,

QT~ t !5expS 2
4rADt

Ap
D . ~9!

Note that the size of the one-dimensional targetl does not
appear in this exact expression for its survival probabil
Later, in Sec. V, we will find that at suitably large times, t
size of the target is unimportant for alld,2 ~where diffusion
is recurrent!.

B. Bounding argument for a diffusing particle in the presence
of mobile traps

We now discuss how to construct upper and lower bou
on the particle’s survival probabilityQ(t) using the result for
the target annihilation problem~9! in one dimension. We
claim that, on average, a particle surrounded by a unifo
isotropic distribution of traps survives longer if it is statio
ary than if it is allowed to diffuse. We are currently unable
04110
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prove this statement rigorously, although it is supported
intuition and numerical data~see Sec. IV below!. We also
note that when we say ‘‘on average’’ we mean ‘‘after ave
aging over all possible initial trap positions and trajector
of both particle and traps.’’

If this claim is accepted, we obtain an upper boundQU(t)
on the particle’s survival probability from Eq.~9! by noting
that requiring the particle to remain stationary is equival
to having a target region of sizel 50. Then we immediately
have that

Q~ t !<QU~ t !5expS 2
4rADt

Ap
D . ~10!

To derive a lower bound on the survival probabilityQ(t)
we introduce a notional box of sizel centered on the origin
If we ask for the particle to remain inside this box until
time t, and for all the traps to remain outside it, the traps a
particle may never meet and hence the particle survives u
time t. There are, of course, other trajectories for which t
particle survives, and so those just described form a subs
all possible surviving trajectories—see Fig. 1. Hence
probability that the particle remains within the box and tra
outside is a lower boundQL(t) on Q(t).

There are three independent contributions to this bou
~i! the probability that there are initially no traps in the bo
of size l; ~ii ! the probability that no traps enter the box up
time t; and ~iii ! the probability that the particle has not le
the box up to timet. The first two contributions are easil
obtained. From the definition of the Poisson distribution,
have that the probability the box initially contains no traps
exp(2rl). Second, the probability that no traps enter the b
is independent of the box size and is given by Eq.~9!. The
third contribution, the probability that the particle remai
inside the box, is obtained as follows.

Since the system is translationally invariant, we can j
as easily consider a particle initially sandwiched betwe
absorbing boundaries atx50 and x5 l . The probability
QP(tuy) that the particle starting aty5 l /2 has not crossed
the absorbing boundaries satisfies a backward Fokker-Pla
equation

FIG. 1. Two walker trajectories~space-time plots, witht50 at
the bottom! for which the particle~unfilled! survives contact with a
trap. Trajectories of type~i! have the property that the particle re
mains inside a notional box, and the traps outside. This form
subset of the entire class of surviving trajectories, which inclu
paths of type~ii ! in which the particle leaves the box and the tra
enter but nevertheless no particle-trap contact occurs.
1-3
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]QP~ tuy!

]t
5D8

]2QP~ tuy!

]y2
~11!

subject to the absorbing boundary conditionsQP(tu0)
5QP(tu l )50 and the initial conditionQP(tuy)51 for 0
,y, l . The general solution to this equation that satisfies
absorbing boundary conditions is obtained by separating
time and space variables in the usual way. One obtains
Fourier sine series

QP~ tuy!5 (
k51

`

ak expS 2
k2p2D8t

l 2 D sinS kpy

l D . ~12!

The expansion coefficientsak are fixed through the initia
condition. Using the orthogonality of the sine functions o
finds

ak5H 4

pk
, k odd

0, k even.

~13!

For the purposes of the present calculation, we need c
sider only the long-time form ofQP(tuy) for a particle that
starts aty5 l /2. Thus we keep only the longest-lived (k
51) mode in expansion~12! to find

QP~ tu l /2!;
4

p
expS 2

p2D8t

l 2 D . ~14!

Including this along with the contributions to the low
boundQL(t) on the diffusing particle’s survival probability
Q(t) discussed above, we have

Q~ t !>QL~ t !5
4

p
expS 2

p2D8t

l 2
2r l 2

4rADt

Ap
D , ~15!

once the timet is sufficiently large. Note that this provides
bound for a particular box sizel. Since the box is an artificia
construct, we can choose its size so that the lower boun
maximized at a particular~predetermined! time t* . One finds
that the corresponding box size isl * 5(2p2D8t* /r)1/3. Us-
ing this box size in Eq.~15! we find the largest lower boun
is given by

QL~ t !5
4

p
expS 2

4rADt

Ap
23Fp2r2D8t

4 G1/3D . ~16!

Combining this lower bound with the upper boundQU(t)
of Eq. ~10! we find

4

Ap
<2

ln Q~ t !

~r2Dt !1/2
<

4

Ap
13S p

2 D 2/3~D8/D !1/3

~r2Dt !1/6
. ~17!

This implies that the constantl1 in the expressions of Bram
son and Lebowitz~1! is precisely determined as
04110
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t→`

ln Q~ t !

At
54rAD

p
. ~18!

Note that this constant depends only on the density and
fusion constant of the traps, and is independent of the di
sion constant of the particle.

C. Extensions to the basic trapping reaction model

It is straightforward to incorporate two generalizations
the one-dimensional trapping model defined in Sec. II in
the bounding arguments discussed above. The first of the
to allow the traps to the left and right of the origin at time
to have different densities. We denote the larger~respec-
tively, smaller! of these densities asr1 (r2) and their aver-
age asr̄5 1

2 (r11r2). Additionally we shall placen par-
ticles at the origin at time 0 and study the probability thatall
survive until a timet.

To obtain an upper bound on the survival probability, w
note that the survival probability of the particles can on
increase~or remain constant! as eitherr1 or r2 is de-
creased. Hence the survival probability for the case of
equal densities is bounded from above by the case where
density of traps is on both sides equal tor2 . For the case of
a single diffusing particle, we argued above that an up
bound on its survival probability is found by setting its di
fusion constantD8 to 0. Clearly, if D850 the number of
particles at the origin is irrelevant, and so an upper bound
Q(t) is given by Eq.~10! with r5r2 , i.e.,

Q~ t !<QU~ t !5expS 2
4r2ADt

Ap
D . ~19!

To obtain a lower bound on the particles’ survival pro
ability we once again introduce a notional box, inside whi
all the particles must remain and no traps may enter u
time t. This time, however, we respect the asymmetry of
problem by allowing the box to extend a distancel 2 into the
low-density region of traps andl 1 into the high-density re-
gion. We will again seek to maximize the lower bound
varying l 2 and l 1 .

A lower bound QL(t) is obtained using an argumen
analogous to that leading to Eq.~16!. Considering once again
late times, we find

QL~ t !}expS 2
np2D8t

~ l 21 l 1!2
2~r2l 21r1l 1!

2
2r2ADt

Ap
2

2r1ADt

Ap
D . ~20!

The number of particlesn enters into this expression throug
the fact that the probability forall of then particles to remain
inside the box of sizel 5 l 21 l 1 is simply thenth power of
the corresponding probability for a single particle.

The maximal lower bound for a prescribed timet* is
obtained from Eq.~20! by settingl 1* to zero~thus discount-
1-4
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ing particle trajectories that enter the high-density regi!
and puttingl 2* 5(2np2D8t* /r2)1/3. Then

Q~ t !>QL~ t !}expS 2
4r̄ADt

Ap
23Fnp2r2

2 D8t

4 G1/3D .

~21!

Along with the upper bound Eq.~19! we find that

4

Ap
<2

ln Q

~r2
2 Dt !1/2

<
4

Ap

r̄

r2
13S np2D8

4D D 1/3 1

~r2
2 Dt !1/6

.

~22!

Note that, except for the case wherer̄5r2 ~which implies
r25r1) these two bounds do not converge and so we c
not make a precise prediction forl when the trap densitie
are unequal. For the caser25r1 , however, the bounds con
verge to 4/Ap, independent of the number of particlesn.

IV. SIMULATION ALGORITHM AND RESULTS

A sophisticated algorithm for simulating the trapping r
action in discrete space and time and with a Poisson di
bution of traps was recently introduced@16#. The beauty of
the algorithm is that it admits~numerically! exact calculation
of the survival probability for an arbitrarily long, but fixed
trajectory of the particle. As will be discussed below, t
algorithm takes into account all possible paths of the traps
long as their initial distribution is Poisson. In order to obta
an estimate of the particle survival probability, it is necess
to iterate the algorithm over a sequence of particle paths.
now discuss this algorithm in detail.

A. An efficient simulation algorithm

In order to simulate the trapping reaction model in o
dimension, we construct a discretized version in which e
walker follows a pathx(t) that hasx(t11)2x(t)561.
Since all hops to the left or right occur in parallel, we mu
ensure that the initial coordinates of all the walkers are e
integers so that no two walkers are able to hop over e
other.

As a starting point in understanding the simulation alg
rithm, consider a system comprising the particle, whose
jectory x0(t) is predetermined, and a single trap, whose t
jectory x1(t) is stochastic given some initial conditio
x1(0)5y1. The probabilityP1(x,t) of finding the trap at site
x after time t, given that it has not absorbed the partic
satisfies the equation

P1~x,t11!5
1

2
@P1~x21,t !1P1~x11,t !# ~23!

subject to the initial conditionP(x,0)5dx,y1
and the moving

absorbing boundary conditionP„x0(t),t…50. Note that Eq.
~23! is the discrete analog of the diffusion~Fokker-Planck!
equation
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]P1~x,t !

]t
5D

]2P1~x,t !

]x2
. ~24!

By Taylor expanding Eq.~23! we find the diffusion constan
of both particle and trap to beD5D85 1

2 .
The solution of the diffusion equation with an arbitra

moving absorbing boundary atx0(t) is not known analyti-
cally. One can obtain it numerically, however, by iteratin
the following two steps overt851,2, . . . ,t.

~1! Construct the probability distribution of the trap’s po
sition using the equationP1(x,t8)5 1

2 @P1(x21,t821)
1P1(x11,t821)#.

~2! Enforce the absorbing boundary condition by sub
quently settingP1@x0(t8),t8#50.

In the simulation, we wish to consider not just a sing
trap, but a Poisson distribution of traps. This can be achie
as follows. LetPn(x,t) be the probability that there aren
traps on lattice sitex at time t. We shall assume that thi
distribution is Poisson, i.e.,

Pn~x,t !5
@c~x,t !#n

n!
exp@2c~x,t !# ~25!

in which c(x,t) is the mean number of traps at sitex and
time t.

Now, if each trap can hop with equal probability to th
left or right in one time step, we have

Pn~x,t11!5 (
m50

n

Wm
1~x21,t !Wn2m

2 ~x11,t ! ~26!

in which Wm
6(x,t) is the probability thatm particles hop

from site x at time t to x61 at time t11. This quantity is
given by

Wm
6~x,t !5 (

s5m

`
@c~x,t !#s

s!
exp@2c~x,t !#S s

mD 1

2s
. ~27!

Insertion of this expression into Eq.~26! and a little algebra
reveals that

Pn~x,t11!5
@ c̄~x,t !#n

n!
exp@2 c̄~x,t !# ~28!

in which

c̄~x,t !5
c~x21,t !1c~x11,t !

2
. ~29!

That is, if the distribution of traps at timet is Poisson the
distribution of traps at timet11 is also Poisson, with the
mean occupation number at each site obeying the disc
diffusion equation

c~x,t11!5
1

2
@c~x21,t !1c~x11,t !#. ~30!
1-5
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As with the case of the single-trap described above,
wish to determine the probability distribution of traps giv
that the particle following the predetermined pathx0(t) has
not been absorbed until a timet. We must therefore have a
each time stepPn„x0(t),t…5dn,0 , which can be achieved b
enforcing the boundary conditionc„x0(t),t…50. Thus we
can evolve the mean occupation numbers for the Pois
distributed sea of traps in exactly the same way as for
single-trap distribution function described above~albeit with
a different initial condition, to be described shortly!.

In the simulations, we wish to calculate the probabil
that the particle has survived until timet. To obtain an ex-
pression for this, consider a particular distribution of tra
described by the functionc(x,t). The probability that sitex0
contains no traps is just exp(2c@x0,t#) and so Q(t11)
5Q(t)exp(2c@x0,t#) where the value ofc(x0 ,t) used is that
obtained after the diffusion step, but before enforcing
boundary conditionc(x0 ,t)50.

We now give a step-by-step explanation of the algorit
for calculating the particle survival probability for a pred
termined particle pathx0(t). One begins by setting up th
trap concentration as follows:

c~x,t0!5H 2rL, x,x0~0!

0, x5x0~0!

2rR, x.x0~0!,

~31!

in which rL andrR are the equivalent continuum densities
the left and right of the particle, as used in Sec. III C. T
factor of 2 emerges because that is the effective lattice s
ing in the discrete model. We also setQ(0)51 ~i.e., we
assume there are no traps at the origin to begin with!. Then,
for each timet851,2, . . . ,t we perform the following steps

~1! The trap concentration variables are evolved us
c(x,t8)5 1

2 @c(x21,t821)1c(x11,t821)#.
~2! The cumulative particle survival probability is calcu

lated usingQ(t8)5Q(t821)exp@2c„x0(t8),t8…#.
~3! The boundary condition is enforced by settin

c„x0(t8),t8…50.
Note that this algorithm can be run for paths of arbitra

length and that, at a particular timet8, the trap density at
positionsx,x0(0)2t8 andx.x0(0)1t8 is uniform. Hence
at each time step, one need deal only witht811 concentra-
tion variables to simulate the infinite system.

Using the above algorithm, one obtains the survival pr
ability for a particle following a particular pathx0(t). To
reach an estimate of the particle survival probability av
aged over all paths, it is most efficient to perform Mon
Carlo sampling. That is, one generates a binomial rand
walk by choosing the particle displacementx0(t8)2x0(t8
21)5$21,1% with equal probability. Then, one estimate
the mean particle survival probability as

Q~ t !'
1

N (
k51

N

Q(k)~ t ! ~32!

in which Q(k) is the value of the survival probability for th
kth random walk. One can, of course, estimate other qua
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ties, such as the mean and variance of the particle’s displ
ment. Also, if one is interested only in the short-time beha
ior, one can obtain the particle survival probability for ea
possible path. We should also note that the one-dimensi
algorithm described here generalizes straightforwardly
higher ~integer! dimensions.

B. Numerical results

We first investigate the entire set of short particle paths
order to get a feel for those that give rise to the grea
probability of survival. For each timet<28 we found that
the paths which have the greatest survival probability
those with the smallest width~defined as the distance be
tween the extrema of the path!, i.e., the sequencesx(t)
5(0,1,0,1,0, . . . ) and x(t)5(0,21,0,21,0, . . . ). This re-
sult gives support to the supposition in Sec. III that stay
still ~i.e., a diffusion constantD850) gives rise to the great
est chance of survival. We also established this to be case
two-dimensional walks up to a timet512.

It is a simple matter to use the algorithm presented ab
to find the probabilityP(x,tuS) for the particle to be at co-
ordinatex after time t given that it has survived. Then, a
application of Bayes’ theorem yields the more telling qua
tity P(S,tux), i.e., the probability that the particle has su
vived to timet given that it ends at coordinatex. The result-
ing data are plotted in Fig. 2 and one sees quite clearly
the particle is most likely to survive if it is at the origin, a
least for timest<28. This figure provides further weight t
our assertion that staying still is the best particle survi
strategy.

As stated in the preceding section, one can obtain e
mates of various quantities at later times if one perfor
Monte Carlo sampling over particle paths. In fact, we p
duced histograms ofP(S,tux) this way and obtained dat
very similar to those shown in Fig. 2~except with poorer
statistics!. Hence we do not present them here. Instead
concentrate on the survival probabilities for a range of t
densities to compare with the bounds given by Eq.~22!.

First we consider the case of equal trap densities ei
side of the origin and the case ofn51 and 2 particles start

FIG. 2. Survival probabilityP(S,tux) given that the particle is a
site x at early times and withrL5rR50.5.
1-6
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ing at the origin. We generated the data for the casen51
using the algorithm described above, and densitiesrL5rR
50.5 until a timet530 000. Bearing in mind the form of th
bounds Eq.~22! it is appropriate to plot the quantityl(t)
52 ln Q(t)/Ar2

2 Dt against log time. In all the simulations
D5D85 1

2 and in this case,r250.5. Hence the upper an
lower bounds in Eq.~22! converge to the constantl(`)
54/Ap. Figure 3 shows that, after an initial transient,l(t)
does fall within the bounds. However, even at the late tim
probed in the simulation,l(t) still seems to be far away
from its asymptote. This highlights the fact that the predic
asymptotic form for the particle’s survival probability Eq.~1!
has not yet been observed in simulation, even with soph
cated methods at our disposal.

The data for the casen52 have been taken from Ref.@16#
and are plotted with our bounds in Fig. 4. As with the ca
n51 we have from Eq.~22! thatl(`)54/Ap and again the
convergence to asymptopia is very slow.

In Fig. 5 we plot the single particle survival probabilit
for the case, where the densities of traps either side of
origin are unequal. Specifically we have the casesr1 /r2

FIG. 3. Single particle survival probability and bounds wi
rL5rR50.5.

FIG. 4. Two particle survival probability taken from Ref.@16#
and bounds withrL5rR50.25.
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52,4,8 withrR50.5 in each case. Note that the density us
to scale the plots is always the smaller of the two,r2 . Again
we see that the numerical data lie within the bounds p
dicted by Eq.~22!. In these cases, however, the bounds
have presented do not converge so we have no predict
for the limiting value ofl(t).

V. ANALYTICAL RESULTS IN DIMENSIONS GREATER
THAN ONE

The upper and lower bounds onQ(t) derived ind51 will
now be generalized to alld in the range 1,d,2 and tod
52, the latter case requiring a slightly different treatme
The cased.2 will also be discussed.

A. Upper bound

Let the particle, with diffusion constantD8, start at the
origin, and the traps, with diffusion constantD, be randomly
distributed in space with densityr. As before, we assert, on
intuitive grounds, that the ‘‘best strategy’’ for the particle
to stay at rest at the origin. With this assumption~which was
verified numerically ford52, for all times up tot512, in
the preceding section! the survival probability forD850
provides an upper bound on the survival probability for a
D8.0. Let Q1(tur ) be the probability that a given trap
starting a distancer from the origin, has not yet visited th
origin at timet. It obeys the backward Fokker-Planck equ
tion

]Q1

]t
5D¹2Q15DS ]2Q1

]r 2
1

d21

r

]Q1

]r D , ~33!

where we have exploited the spherical symmetry of the pr
lem. The boundary conditions areQ1(tu0)50 for all t and
Q1(tu`)51 for all t, while the initial condition isQ1(0ur )
51 for all r .0. Since there is no length scale in the pro
lem, Q1(tur ) must have the scaling form

FIG. 5. Single particle survival probability and bounds wi
r1 /r252, 4, and 8. The symbols on the solid lines~representing
the numerical data! are included purely for the purpose of identify
ing each curve with the corresponding density ratio.
1-7
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Q1~ tur !5 f ~r /ADt !. ~34!

Substituting this form into Eq.~33! gives an ordinary differ-
ential equation forf (x):

d2f

dx2
1

d21

x

df

dx
1

x

2

df

dx
50, ~35!

with boundary conditionsf (0)50, f (`)51. The solution is

f ~x!5FGS 22d

2 D G21E
0

x2/4
ds s2d/2e2s. ~36!

For d51 our previous result,f (x)5erf(x/2), is recovered.
Note that Eq.~36! is only valid for d,2, since the integra
diverges ford>2. This regime will therefore require a dif
ferent treatment.

Equation~36! gives the survival probability of a station
ary particle in the presence of a single diffusing trap. Co
siderN traps in a large sphere of volumeV centered on the
origin. Each trap starts anywhere in the volume with eq
probability. The average, over the initial positions of t
traps, of the probability that none of the traps has yet reac
the origin at timet is

Q~ t !5F 1

VEV
ddr f S r

ADt
D GN

5F12
1

VEV
ddr H 12 f S r

ADt
D J GN

. ~37!

Taking the limit N→`, V→`, with r5N/V held fixed,
gives

Q~ t !5expF2rE ddr H 12 f S r

ADt
D J G , ~38!

where the integral is now over all space. Inserting the fu
tion f (x) from Eq. ~36! and evaluating the integral gives th
final result, which serves as an upper bound,QU(t), for the
problem with generalD8.0:

QU~ t !5exp@2adr~Dt !d/2#, ~39!

where

ad5
2

pd
~4p!d/2 sinS pd

2 D . ~40!

B. Lower bound

Our strategy for constructing a rigorous lower bound f
lows that employed in one dimension. We construct
imaginary (d-dimensional! sphere of radiusl centered on the
origin, and calculate the probability that~i! there are no traps
inside the sphere att50, ~ii ! the particle stays inside th
sphere up to timet, and~iii ! no traps enter the sphere up
time t. As before, the set of trajectories~of particle and traps!
selected by these constraints are a subset of all trajectori
04110
-

l

ed
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which no traps meet the particle, so the probability weight
this subset provides a lower bound onQ(t). We compute
these probabilities in turn.

~i! The probability that the sphere initially contains n
traps is simply exp(2rVdl

d), where Vd52pd/2/dG(d/2) is
the volume of ad-dimensional unit sphere.

~ii ! The probability,QP(tur ,l ) that the particle stays insid
the sphere up to timet is obtained by solving the backwar
Fokker-Planck equation~33!, with D replaced byD8, subject
to the boundary conditionsQP(tu l ,l )50 and QP(tur ,l ) is
analytic atr 50, and the initial conditionQP(0ur ,l )51 for
r , l . The solution has the form

QP~ tur ,l !5r n (
n51

`

cn exp~2D8kn
2t !J2n~knr !, ~41!

whereJ2n(z) is a Bessel function of the first kind,

n5~22d!/2, ~42!

andknl 5zn is thenth zero ofJ2n(z). The coefficientscn are
obtained from the initial condition, but their precise valu
are of no interest here. Since the particle starts atr 50, we
needQP(tu0,l ). Its asymptotic form is

QP~ tu0,l !;exp~2z1
2D8t/ l 2!. ~43!

~iii ! To compute the probability,QT(t), that no trap enters
the sphere up to timet ~the target annihilation problem! we
begin by calculating this probability,Q1(tur ,l ), for a single
trap. Then the probability that none of the traps enter
sphere is given by a natural generalization of Eq.~38!,

QT~ t !5expF2rE
r . l

ddr $12Q1~ tur ,l !%G . ~44!

In contrast to the casel 50 used for the upper bound, there
no simple scaling form analogous to Eq.~34! for Q1(tur ,l )
becausel provides an additional length scale.

The functionQ1(tur ,l ) obeys the backward Fokker-Plan
equation~33!, with boundary conditionsQ1(tu l ,l )50 for all
t, Q1(tu`,l )51 for all t, and initial conditionQ1(0ur ,l )
51 for r . l . The solution can be found by Laplace tran
form techniques. The result is@25#

Q1~ tur ,l !5
2

p S r

l D
nE

0

`dk

k
exp~2Dk2t !Gn~kr,kl !,

~45!

where

Gn~x,y!5
Yn~x!Jn~y!2Jn~x!Yn~y!

Jn
2~y!1Yn

2~y!
, ~46!

andYn(z) is a Bessel functions of the second kind.
Before continuing, we can first simplify Eq.~44! as fol-

lows. First define
1-8
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F~ t !5E
r . l

ddr $12Q1~ tur ,l !%, ~47!

where F(0)50 follows from the initial condition
Q1(0ur ,l )51 for all r . l . Then we use the backwar
Fokker-Planck equation~33! to write

] tF52DE
r . l

ddr ¹2Q1~ tur ,l !52DE
A
dA•“Q1~ tu l ,l !

5DSdl d21] rQ1~ tur ,l !ur 5 l , ~48!

whereA is the surface of the sphere,dA is a surface elemen
directed along the inward normal to the sphere, and

Sd5
2pd/2

G~d/2!
~49!

is the surface area of the unit sphere ind dimensions. Inte-
grating result~48! with respect to time, with initial condition
F(0)50, Eq. ~44! takes the form@22#

QT~ t !5expF2rDSdl d21E
0

t

dt8] rQ1~ t8ur ,l !ur 5 l G . ~50!

We are interested in the behavior ofQT(t) for larget. At this
point it is convenient to discuss separately the cases 1,d
,2, d52, andd.2.

1. The case 1ËdË2

For 1,d,2, the functionQ1(tur ,l ), given by Eq.~45!,
has the large-t expansion@25#

Q1~ tur ,l !5F S r

l D
2n

21G H t2n

G~11n!
1

t22n

G2~11n!

3
G2~12n!

G~122n!
1•••J , ~51!

wheret54Dt/ l 2 and we recall thatn5(22d)/2. Taking the
derivative with respect tor, settingr 5 l , inserting the result
into Eq. ~50!, and evaluating the integrals overt8, gives the
probability, that the target has not been annihilated by a t

QT~ t !5exp@2adr~Dt !d/22bdr~Dt !d21l 22d1•••#,
~52!

wheread is given by Eq.~40! and

bd5
22d21pd/2G~d/2!

~22d!G2~12d/2!G~d!
. ~53!

Note that, as with the cased51, the leading term is inde
pendent ofl. This phenomenon can be attributed to the
currence of diffusion in dimensionsd,2.

Finally we assemble the contributions~i!–~iii ! above to
obtain a rigorous lower bound on the asymptotic behavior
1,d,2,
04110
p,

-

r

QL~ t !;exp@2adr~Dt !d/2#

3exp@2rVdl d2z1
2D8t/ l 22bdr~Dt !d21l 22d#.

~54!

As usual, for a given timet* we choose a sphere radiusl * to
optimize the lower bound. The dominantl-dependent terms
for t→` are the final two terms in the second exponent
Ignoring constants of order unity, we find that the value ofl *
that gives the greatest lower bound is

l * ;S D8

rDd21D 1/(42d)

~ t* !(22d)/(42d). ~55!

Inserting this into Eq.~54! the second exponential takes th
form

exp@2const~D8!(22d)/(42d)~rDd21!2/(42d)td/(42d)#. ~56!

The neglected first term in the second exponential in Eq.~54!
behaves asl d;td(22d)/(42d), which is indeed negligible
compared totd/(42d) for large t ~recalling thatd.1 here!.

In summary, the best lower bound behaves as

QL~ t !;exp@2adr~Dt !d/21O~ td/(42d)!#. ~57!

Since d/(42d),d/2 for d,2, the two bounds pinch as
ymptotically, to give the exact result

lim
t→`

2
lnQ~ t !

r~Dt !d/2
5ad , 1<d,2, ~58!

where we recall thatad is given by Eq.~40!. The constantld
in Eq. ~1! is therefore given by

ld5
2r

pd
sinS pd

2 D ~4pD !d/2, 1<d,2. ~59!

Note that the subdominant term in Eq.~57! decays more
slowly relative to the leading term asd→2, signaling a
change of behavior atd52. Note also that the coefficientad
vanishes atd52, suggesting aslower decay than a simple
exponential in two dimensions. We now show that this e
pectation is correct, and determine the constantl2 in Eq. ~1!.

2. The case dÄ2

For d52 the asymptotic form ofQ1(tur ,l ) is @25#

Q1~ tur ,l !52lnS r

l D F 1

ln t
1OS 1

ln2 t
D G , ~60!

wheret54Dt/ l 2 as before. Inserting this into Eq.~50!, with
d52, gives the probability that no trap has entered the cir
of radiusl up to timet:

QT~ t !5expF2
4prDt

ln~4Dt/ l 2!
1OS t

ln2 t
D G . ~61!
1-9
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Following our previous procedure, the asymptotic low
bound is given by

QL~ t !;expF2
4prDt

ln~4Dt/ l 2!
1OS t

ln2 t
D 2rp l 22z1

2 D8t

l 2 G ,

~62!

wherez1 is now the smallest zero ofJ0(z). The dominant
terms in the exponential for larget are the first and las
terms. Extremizing this bound with respect tol at some fixed
t* gives

l * ;z1S D8

4prD D 1/2

lnS rD2t*

D8
D ~63!

to leading order, and

QL~ t !;expF2
4prDt

ln~rD2t/D8!
1OS t ln~ ln t !

ln2 t
D G . ~64!

As far as the upper bound is concerned, Eq.~39! is not
useful ind52, sincea250. This tells us that the probability
that a trap will reach a specified region of zero volume~i.e.,
a specified point! is zero in two dimensions. TheA particle
has to be given a nonzero size~or the system put on a lattice!
for a nonzero trapping probability. We therefore assign
particle a nonzero radiusa, but still treat it as stationary fo
the upper bound. The traps will, for the moment, continue
be treated as point particles. With the definition that trapp
occurs if a trap enters within the particle’s radius~so thata is
an interaction range!, our upper bound is just given by th
probabilityQT(t), Eq. ~61!, but with l replaced bya, to give

QU~ t !;expF2
4prDt

ln~4Dt/a2!
1OS t

ln2 t
D G . ~65!

In the limit t→`, the bounds converge to give th
asymptotic resultQ(t);exp(24prDt/ln t) or, equivalently

lim
t→`

2
ln t ln Q~ t !

rDt
54p. ~66!

This gives the constantl2 in Eq. ~1! as

l254prD. ~67!

As noted previously, the algorithm described in Sec.
can be used to simulate the trapping reaction in any inte
dimension. Numerical results for the two-dimensional s
tem were presented in Ref.@16# and we compare these da
with the asymptotic result~66! in Fig. 6. We find that the
deviation of the numerical results from the asymptote is e
more marked in two dimensions than in one~see Fig. 3!. Part
of the reason for this is, presumably, that the increased n
ber of sites in two dimensions means that one cannot pr
such late times. A second, and perhaps more important,
son is the very large corrections to scaling evident from
bounding arguments. Therelativesize of the subleading term
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in Eq. ~65! is O(1/ln t), while the subleading term for the
lower bound, Eq.~64!, is even larger, of relative size
O(ln@ln t#/ln t). This suggests that convergence to asympto
will be extremelyslow in two dimensions. Note also that th
particle’s survival probability was found to decay to;10299

after t51600 time steps. This emphasizes the importance
determining the corrections to asymptopia in order to de
mine the form of the survival probability in numericall
~and, indeed, experimentally! accessible regimes.

3. The case dÌ2

The same bounding arguments can be applied equ
well in d.2. The main difference fromd<2 is that the
bounds no longer converge, so it is not possible to determ
ld exactly ~except ford very close to 2—see below!. The
basic idea is the same as ford<2, except that the particle
must be given nonzero sizes~or, equivalently, a nonzero
range of interaction!. We let the particle have radiusa, and
the traps radiusb. A reaction is deemed to have occurred
there is an overlap between the particle and any trap, i.e
the centers approach more closely than a distanceR5a
1b, which is the range of interaction.~Note, however, that
we continue to assume that the traps do not interact w
each other. In particular, there is no excluded volume in
action between traps.!

The upper bound is obtained from the target annihilat
problem with target radiusR. For d.2, the single-trap sur-
vival probability,Q1(tur ,R), has a nonvanishing large-t limit
given by the well-known result

Q1~`ur ,R!512~R/r !d22, ~68!

which is easily obtained from Eq.~33! on setting the left side
to zero, and imposing the boundary conditionsQ1(`uR,R)
50, Q1(`u`,R)51 on the resulting ordinary differentia
equation. Inserting this form in Eq.~50!, with l 5R, and
evaluating the time integral, gives an upper bound with
leading large-t behavior

QU~ t !;exp@2~d22!SdrRd22Dt#. ~69!

FIG. 6. Numerical data for the two-dimensional trapping rea
tion taken from Ref.@16#. In the simulation, the trap densityr
51/4 and the diffusion constantsD5D851/4. The asymptote
given by Eq.~66! is plotted for comparison.
1-10
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The lower bound is obtained in a similar fashion, follow
ing the pattern established ford<2. One constructs a no
tional sphere of radiusl, centered on the initial position o
the particle. The bound is given by the subset of trajecto
in which ~i! there are no traps initially within the sphere,~ii !
the center of the particle remains within a sphere of rad
l 2a, so that the particle remains entirely inside the spher
radius l, and ~iii ! the center of every trap remains outside
sphere of radiusl 1b, so that every trap remains entire
outside the sphere of radiusl.

The probability of~i! is exp@2rVd(l1b)d#. The probability
of ~ii ! has the asymptotic form exp@2z1

2D8t/(l2a)2#, wherez1

is the first zero ofJ2n(z)5J(d22)/2(z). The probability of
~iii ! is given, for larget, by Eq. ~69! with R replaced byl
1b. Assembling these three contributions gives t
asymptotic lower bound

QL~ t !;exp@2~d22!Sdr~ l 1b!d22Dt2z1
2D8t/~ l 2a!2

2rVd~ l 1b!d#. ~70!

This has to be maximized with respect tol. For t→`, the
first two terms in the exponent dominate, and the final te
is negligible. Settingl 5a1x, and maximizing with respec
to x, gives the equation

~d22!2SdrD~x1R!d2352z1
2D8/x3, ~71!

where R5a1b as before. This equation cannot be solv
analytically for generald, so we concentrate on two solub
cases—the physically interesting cased53, and the limitd
→21.

For d53, we have Sd54p and z15p, giving x
5(pD8/2rD)1/3 and

QL~ t !;exp@24prDRt23~2p2rDAD8!2/3t#. ~72!

Combining the two bounds, we obtain the asymptotic fo
Q(t);exp(2l3t), as in Eq.~1!, with the bounds

4prDR<l3<4prDR13~2p2rDAD8!2/3, d53.
~73!

It is worth noting that the second term on the right is neg
gible compared to the first ifD8/D!rR3, i.e., whenD8/D is
small compared to the number of traps per interaction v
ume.

For d521e, Eq. ~71! has the solution

x5
1

e S z1
2D8

prD D 1/2

, ~74!

to leading order fore→0, giving the lower boundQL(t)
;exp@22perDt# to leading order ine. In the same limit, the
upper bound Eq.~69! has exactly the same form, giving th
resultQ(t);exp(2ldt) with

ld52prD e1•••. ~75!

Hence the bounds pinch to leading order ine, but not for
generald.
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To conclude this section, we consider again the c
where n particles start from the origin, and we want th
probability thatall survive until timet. As noted in the dis-
cussion of the one-dimensional case,n only enters in the
calculation of the lower bound, in the term giving the pro
ability for the particle to stay inside the notional box (d
51), or sphere (d.1), of sizel. This probability behaves a
exp(2constD8t/ l 2), so havingn particles simply requires
raising this factor to the powern, which is equivalent to
replacingD8 by nD8. Since the asymptotic forms we deriv
do not depend onD8 for d<2, it follows that our results are
independent ofn in this regime. Ford.2, however, our
results do depend onD8 @see Eq.~73!#. In this regime, there-
fore, the generalization to arbitraryn is achieved through the
replacementD8→nD8.

VI. DISCUSSION AND SUMMARY

In this paper we have derived a number of results for
asymptotic survival probability of a particle diffusing amon
randomly distributed diffusing traps with densityr. We al-
low the particle and traps to have different diffusion co
stants,D8 and D respectively. Our results take the form
originally derived by Bramson and Lebowitz@14#, as ex-
pressed in Eq.~1!. With one assumption, supported by n
merical evidence, we have obtained exact results for the
efficientsld in Eq. ~1! for dimensionsd<2, and an exact
inequality for dimensionsd.2. These results are given b
Eqs. ~18!, ~59!, and ~73!. For d<2 the results forld are
independent of the diffusion constantD8 of the particle.

The results are obtained by deriving upper and low
bounds forld , and showing these coincide ford<2. Whilst
our lower bound is rigorous, we had to assume that the
ticle’s survival probability for D850 provides an upper
bound on its survival probability whenD8.0 when the trap
distribution is symmetric. Indeed, for thed51 system with
different densities of traps to the left and right of the partic
it was found that staying still isnot the particle’s best strat
egy. Instead, trajectories that survive for long times tend
be those in which the particle drifts to the side with the low
trap density. This emphasizes the crucial role of the symm
try of the trap distribution, an observation supported by p
turbative studies for a system with a finite number of tra
@15,26#.

In all cases the particle and traps are assumed to mov
a continuous space, and to have zero size ford,2. For d
>2 is necessary for the particle and/or the traps to h
nonzero size~otherwise the survival probability, for motion
on a continuous space, is one for all time!. We also take the
traps to be randomly distributed in space at timet50, with
uniform densityr. This raises the question of the extent
which the results are ‘‘universal,’’ i.e., independent of t
microscopic details of the model, a question which we n
address.

We argue that, ford<2, the results do indeed have
degree of universality. Ind51, the optimal box size used t
obtain the lower bound onQ(t) is large, l;t1/3, ast→`, so
the effect of the particle having a finite size when confined
this box is negligible. With a little thought one sees that t
1-11



e

icl
co
si

r
pe

ie
ic

is
li
n
a

e

ith
ia

,
is
e
th
ns
vi

d
ffi
ia

f
f

by

for
ries

t
per

-
hat
Per-
in a
or-
ec-
to
sly

ns,

R/

R. A. BLYTHE AND A. J. BRAY PHYSICAL REVIEW E 67, 041101 ~2003!
same is true for alld<2. The optimal length scale for th
lower boundgrows with timeas l;t (22d)/(42d) (d,2) or l
; ln t (d52), and the results are independent of the part
and trap sizes, as far as the leading-order results are
cerned. The same is true of the upper bound—the finite-
corrections come in at subleading order.

The dominance of large length scales at late times, fod
<2, also suggests that the asymptotic results are inde
dent of whether the model is defined on the continuum~as
here! or on a lattice, an assumption implicitly made earl
when we compared our theoretical predictions to numer
results obtained from lattice simulations. Ford.2, however
the dominant value ofl that determines the lower bound
time independent. Therefore we expect a lack of universa
in this case. The explicit dependence on the interaction ra
R in Eq. ~73! is a signature of this effect. Note, however, th
to leading order ine5d22, ld is independent ofR @see Eq.
~75!# and we expect the result to be universal to this ord
Physically, this is because the length scalel 5a1x diverges
ase→0 @see Eq.~74!#.

A further universality question concerns universality w
respect to the initial conditions. We have taken Poisson
initial conditions, where the probabilityPN(V) of havingN
traps in a volume V is given by PN(V)
5@(rV)N/N! #exp(2rV) for any V. The lattice simulations
where the number of traps on each site has a Poisson d
bution ~with mean r, say! has this property, namely, th
number of traps onm sites has a Poisson distribution wi
meanmr. Whether there is a larger class of initial conditio
sharing the same asymptotic behavior is a question deser
further study.

We conclude by discussing some recent papers relate
the present work, and directions for future work. The coe
cient ld in Eq. ~1! has recently been calculated using a d
grammatic method@27# to first order in (22d). The quoted
result, however, exceeds our rigorous upper bound forld
@corresponding to the lower bound forQ(t)] by a factor of
s

e,

i-
,
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two. This is because in Ref.@27# ld depends onD and D8
only through their sumD1D8 @28#, whereas our rigorous
upper bound onld depends solely onD. It is interesting to
note that in the related processA1B→A, where the singleA
particle acts as a trap for theB particles, certain properties o
the B-particle distributioncan be expressed as functions o
D1D8 @29#. However, we stress that for theA1B→B re-
action studied here, the asymptotics are entirely governed
the B-particle diffusion constant ford<2.

In a very recent work@30# our approach, as outlined in
Ref. @15#, has been generalized to diffusion on fractals
the case where the fractal dimension of the traps’ trajecto
is greater that the physical dimension~this condition is the
analog of the conditiond,2 in the present work!. It should
be noted, however, that in Ref.@30# the optimal lower bound
on Q(t) is not obtained. Ford,2, only the subdominan
corrections to the leading terms are affected, and the up
and lower bounds still pinch asymptotically. Ford52, how-
ever, the approach used in Ref.@30# yields bounds that no
longer converge at larget, so the exact result Eq.~67! for l2
is missed.

In this paper and our earlier work@15# we noted that the
extant simulation data@16# fail to reach the asymptotic re
gime even though survival probabilities are so small t
they can only be measured using sophisticated methods.
haps the most important challenge, therefore, is to obta
better understanding of the corrections to asymptopia in
der to make testable, quantitative predictions. Other dir
tions for future work include exploring further the extent
which our results are universal, and establishing rigorou
the validity of our upper bound.
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